Abstract - We present results and analysis from a large scale exact stochastic dynamical simulation of a zombie outbreak. Zombies have attracted some attention lately as a novel and interesting twist on classic disease models. While most of the initial investigations have focused on the continuous, fully mixed dynamics of a differential equation model, we have explored stochastic, discrete simulations on lattices. We explore some of the basic statistical mechanical properties of the zombie model, including its phase diagram and critical exponents. We report on several variant models, including both homogeneous and inhomogeneous lattices, as well as allowing diffusive motion of infected hosts. We build up to a full scale simulation of an outbreak in the United States, and discover that for `realistic' parameters, we are largely doomed. http://meeting.aps.org/Meeting/MAR15/Session/S48.8
Popularized review http://phys.org/news/2015-02-zombie-...cs-reveal.html

Cities would fall quickly, but it would take weeks for zombies to penetrate into less densely populated areas, and months to reach the northern mountain-time zone.

"Given the dynamics of the disease, once the zombies invade more sparsely populated areas, the whole outbreak slows down—there are fewer humans to bite, so you start creating zombies at a slower rate," he elaborates. "I'd love to see a fictional account where most of New York City falls in a day, but upstate New York has a month or so to prepare."

If you somehow happen to find yourself in the midst of a fictional zombie outbreak and want to survive as long as possible, Alemi recommends making a run for the northern Rockies.

Read more at: http://phys.org/news/2015-02-zombie-...cs-reveal.html